Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 287
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(2)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38255851

RESUMEN

HBOT increases the proportion of dissolved oxygen in the blood, generating hyperoxia. This increased oxygen diffuses into the mitochondria, which consume the majority of inhaled oxygen and constitute the epicenter of HBOT effects. In this way, the oxygen entering the mitochondria can reverse tissue hypoxia, activating the electron transport chain to generate energy. Furthermore, intermittent HBOT is sensed by the cell as relative hypoxia, inducing cellular responses such as the activation of the HIF-1α pathway, which in turn, activates numerous cellular processes, including angiogenesis and inflammation, among others. These effects are harnessed for the treatment of various pathologies. This review summarizes the evidence indicating that the use of medium-pressure HBOT generates hyperoxia and activates cellular pathways capable of producing the mentioned effects. The possibility of using medium-pressure HBOT as a direct or adjunctive treatment in different pathologies may yield benefits, potentially leading to transformative therapeutic advancements in the future.


Asunto(s)
Oxigenoterapia Hiperbárica , Hiperoxia , Humanos , Oxígeno , Hipoxia , Inflamación
2.
Life Sci Space Res (Amst) ; 40: 44-50, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38245347

RESUMEN

The objectives of this research were to investigate the impact of hypobaria, hyperoxia, and nitrogen form on the growth and nutritional quality of plants. Pre-culture 20-day-old lettuce (Lactuca sativa L. var. Rome) seedlings grew for 25 days under three levels of total atmospheric pressure (101, 54, and 30 kPa), two levels of oxygen partial pressure (21 and 28 kPa), and two forms of nitrogen (NO3N and NH4N). The ratios of NO3N to NH4N included 3: 1, 4: 0, 2: 2, and 0: 4. The nitrogen quantity included two levels, i.e. N1, 0.1 g N kg-1 dry matrix and N2, 0.2 g N kg-1 dry matrix. The growth status of lettuce plants in different treatments differentiated markedly. Regardless of the nitrogen factor, the growth status of lettuce plants treated with total atmospheric pressure/oxygen partial pressure at 54/21 was equivalent to the treatment of 101/21. Under the hypobaric condition (54 kPa), compared with 21 kPa oxygen partial pressure, hyperoxia (28 kPa) significantly inhibited the growth of lettuce plants and the biomass (fresh weight) decreased by 60.9%-69.9% compared with that under 101/21 treatment. At the N1 level, the sequence of the biomass of lettuce plants supplied with different ratios of NO3N to NH4N was 3: 1 > 4: 0 > 2: 2 > 0: 4, and there were higher concentrations of chlorophyll and carotenoid of lettuce plants supplied with the higher ratio of NO3 to NH4. At the N2 level, the effects of different ratios of NO3N to NH4N on lettuce plants were similar to those at the N1 level. The high nitrogen (N2) promoted the growth of lettuce plants such as 54/21/N2 treatments. Both form and nitrogen level did not affect the stress resistance of lettuce plants. Hypobaria (54 kPa) increased the contents of N, P, and K and hyperoxia (28 kPa) decreased the content of organic carbon in lettuce plants. The high nitrogen (N2) improved the content of total N and the N uptake. The ratios of NO3N to NH4N were 4: 0 and 3: 1, lettuce could absorb and utilize N effectively. This study demonstrated that hyperoxia (28 kPa) inhibited the growth of lettuce plants under the hypobaric condition (54 kPa), and high level of nitrogen (0.2 g N kg-1 dry matrix) and NO3N: NH4N at 3: 1 markedly enhanced the growth, the contents of mineral elements and the nutritional quality of lettuce plants.


Asunto(s)
Hiperoxia , Lactuca , Nitrógeno , Valor Nutritivo , Oxígeno
4.
BMC Complement Med Ther ; 23(1): 428, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38017466

RESUMEN

BACKGROUND: Breast cancer is the most common cancer among women, and melanoma is the most dreadful type of skin cancer. Due to the side effects of chemotherapy drugs, the development of new herbal nano-medicines has been considered. METHODS: This study first investigated the chemical composition of Ferula gummosa essential oil using GC-MS analysis; ß-pinene, with 61.57%, was the major compound. Next, alginate nanoparticles containing ß-pinene and the essential oil with particle sizes of 174 ± 7 and 137 ± 6 nm were prepared. Meanwhile, their zeta potentials were 12.4 ± 0.7 and 28.1 ± 1 mV. Besides, the successful loading of ß-pinene and the essential oil in nanoparticles was confirmed using ATR-FTIR analysis. After that, their effects on viability and apoptotic index of human melanoma and breast cancer cells were investigated in normoxia and normobaric hyperoxia (NBO) conditions. RESULTS: The best efficacy on A-375 and MDA-MB-231 cells was achieved by alginate nanoparticles containing the EO at hyperoxic and normoxia conditions; IC50 76 and 104 µg/mL. Besides, it affected apoptosis-involved genes; as Bax/Bcl-2 ratio was higher than 1, conditions for induction of apoptosis were obtained. Higher sensitivity was observed in the A-375 cell line treated with Alg-EO in the NBO model. CONCLUSIONS: Alginate nanoparticles containing F. gummosa EO could be considered for further investigation in anticancer studies. Also, it may be expected that NBO can be a new strategy for delaying cancer progression and improving nanotherapy efficacy.


Asunto(s)
Neoplasias de la Mama , Ferula , Hiperoxia , Melanoma , Aceites Volátiles , Humanos , Femenino , Aceites Volátiles/farmacología , Aceites Volátiles/química , Ferula/química , Alginatos , Neoplasias de la Mama/tratamiento farmacológico , Melanoma/tratamiento farmacológico , Proliferación Celular
5.
Exp Biol Med (Maywood) ; 248(17): 1492-1499, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37837396

RESUMEN

Hyperoxia exposure of immature lungs contributes to lung injury and airway hyperreactivity. Up to now, treatments of airway hyperreactivity induced by hyperoxia exposure have been ineffective. The aim of this study was to investigate the effects of quercetin on hyperoxia-induced airway hyperreactivity, impaired relaxation, and lung inflammation. Newborn rats were exposed to hyperoxia (FiO2 > 95%) or ambient air (AA) for seven days. Subgroups were injected with quercetin (10 mg·kg-1·day-1). After exposures, tracheal cylinders were prepared for in vitro wire myography. Contraction to methacholine was measured in the presence or absence of organ bath quercetin and/or Nω-nitro-L-arginine methyl ester (L-NAME). Relaxation responses were evoked in preconstricted tissues using electrical field stimulation (EFS). Lung tumor necrosis factor-alpha (TNF-α) and interleukin-1ß (IL-1ß) levels were measured by enzyme-linked immunosorbent assay (ELISA). A P < 0.05 was considered statistically significant. Contractile responses of tracheal smooth muscle (TSM) of hyperoxic animals were significantly increased compared with AA animals (P < 0.001). Treatment with quercetin significantly reduced contraction in hyperoxic groups compared with hyperoxic control (P < 0.01), but did not have any effect in AA groups. In hyperoxic animals, relaxation of TSM was significantly reduced compared with AA animals (P < 0.001), while supplementation of quercetin restored the lost relaxation in hyperoxic groups. Incubation of preparations in L-NAME significantly reduced the quercetin effects on both contraction and relaxation (P < 0.01). Treatment of hyperoxic animals with quercetin significantly decreased the expression of TNF-α and IL-1ß compared with hyperoxic controls (P < 0.001 and P < 0.01, respectively).The findings of this study demonstrate the protective effect of quercetin on airway hyperreactivity and suggest that quercetin might serve as a novel therapy to prevent and treat neonatal hyperoxia-induced airway hyperreactivity and inflammation.


Asunto(s)
Asma , Hiperoxia , Ratas , Animales , Ratas Sprague-Dawley , Animales Recién Nacidos , Quercetina/farmacología , NG-Nitroarginina Metil Éster/farmacología , Hiperoxia/complicaciones , Hiperoxia/patología , Factor de Necrosis Tumoral alfa/metabolismo , Pulmón/patología , Asma/metabolismo , Suplementos Dietéticos
6.
Diving Hyperb Med ; 53(3): 281-284, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37718303

RESUMEN

Introduction: There is clinical equipoise as to whether hyperoxia is injurious to the myocardium, both in the setting of acute ischaemic insults and on the stable myocardium. This study examined the effect of extreme hyperoxia - in the form of hyperbaric oxygen treatment - on the myocardium through measurement of high-sensitivity cardiac troponin. Methods: Forty-eight individuals were enrolled to undergo a series of 30 exposures to hyperbaric oxygen for treatment of non-cardiac pathologies. High-sensitivity troponin T was measured before and after each session. Results: There was no clinically significant difference in troponin measurements following acute or recurrent sequential exposures to extreme hyperoxia, despite the studied patient population having a high rate of previous ischaemic heart disease or cardiovascular risk factors. Conclusions: This study demonstrates that profound hyperoxaemia does not induce any measurable cardiac injury at a biochemical level. Neither is there a reduction in cardiac troponin to suggest a cardioprotective effect of hyperbaric hyperoxia. This provides some reassurance as to the cardiac safety of the routine use of hyperbaric oxygen treatment in management of non-cardiac pathology.


Asunto(s)
Oxigenoterapia Hiperbárica , Hiperoxia , Humanos , Troponina T , Oxígeno , Biomarcadores
7.
Medicine (Baltimore) ; 102(37): e35215, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37713814

RESUMEN

BACKGROUND: Normobaric hyperoxia (NBH) and hyperbaric oxygen therapy (HBOT) are effective treatment plan for traumatic brain injury (TBI). The aim of this study was to compare cognitive outcome after mild TBI between NBH and HBOT so as to provide a more suitable treatment strategy for patients with mild TBI. METHODS: A prospective research was conducted between October 2017 and March 2023, enrolling patients with mild TBI (Glasgow coma scale score: 13-15 points) within 24 hours of injury in Cangzhou Central Hospital. Patients were randomized into 3 groups: group control (C), group NBH and group HBOT. The patients in HBOT group received hyperbaric oxygen therapy in high pressure oxygen chamber and patients in NBH group received hyperbaric oxygen therapy. at 0 minute before NBH or HBOT (T1), 0 minute after NBH or HBOT (T2) and 30 days after NBH or HBOT (T3), level of S100ß, NSE, GFAP, HIF-1α, and MDA were determined by ELISA. At the same time, the detection was performed for MoCA and MMSE scores, along with rSO2. RESULTS: The results showed both NBH and HBOT could improve the score of MoCA and MMSE, as well as the decrease the level of S100ß, NSE, GFAP, HIF-1α, MDA, and rSO2 compared with group C. Furthermore, the patients in group HBOT have higher score of MoCA and MMSE and lower level of S100ß, NSE, GFAP, HIF-1α, MDA, and rSO2. CONCLUSION: Both NBH and HBOT can effectively improve cognitive outcome for patients with mild TBI by improving cerebral hypoxia and alleviating brain injury, while HBOT exert better effect than NBH.


Asunto(s)
Conmoción Encefálica , Oxigenoterapia Hiperbárica , Hiperoxia , Humanos , Estudios Prospectivos , Subunidad beta de la Proteína de Unión al Calcio S100 , Cognición
8.
Int J Mol Sci ; 24(15)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37569737

RESUMEN

Hyperbaric oxygen therapy (HBOT) is a therapeutical approach based on exposure to pure oxygen in an augmented atmospheric pressure. Although it has been used for years, the exact kinetics of the reactive oxygen species (ROS) between different pressures of hyperbaric oxygen exposure are still not clearly evidenced. In this study, the metabolic responses of hyperbaric hyperoxia exposures for 1 h at 1.4 and 2.5 ATA were investigated. Fourteen healthy non-smoking subjects (2 females and 12 males, age: 37.3 ± 12.7 years old (mean ± SD), height: 176.3 ± 9.9 cm, and weight: 75.8 ± 17.7 kg) volunteered for this study. Blood samples were taken before and at 30 min, 2 h, 24 h, and 48 h after a 1 h hyperbaric hyperoxic exposure. The level of oxidation was evaluated by the rate of ROS production, nitric oxide metabolites (NOx), and the levels of isoprostane. Antioxidant reactions were assessed through measuring superoxide dismutase (SOD), catalase (CAT), cysteinylglycine, and glutathione (GSH). The inflammatory response was measured using interleukine-6, neopterin, and creatinine. A short (60 min) period of mild (1.4 ATA) and high (2.5 ATA) hyperbaric hyperoxia leads to a similar significant increase in the production of ROS and antioxidant reactions. Immunomodulation and inflammatory responses, on the contrary, respond proportionally to the hyperbaric oxygen dose. Further research is warranted on the dose and the inter-dose recovery time to optimize the potential therapeutic benefits of this promising intervention.


Asunto(s)
Oxigenoterapia Hiperbárica , Hiperoxia , Masculino , Femenino , Humanos , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/metabolismo , Cinética , Oxígeno , Estrés Oxidativo/fisiología
9.
Cell Rep ; 42(7): 112745, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37405911

RESUMEN

Although increasing evidence suggests potential iatrogenic injury from supplemental oxygen therapy, significant exposure to hyperoxia in critically ill patients is inevitable. This study shows that hyperoxia causes lung injury in a time- and dose-dependent manner. In addition, prolonged inspiration of oxygen at concentrations higher than 80% is found to cause redox imbalance and impair alveolar microvascular structure. Knockout of C-X-C motif chemokine receptor 1 (Cxcr1) inhibits the release of reactive oxygen species (ROS) from neutrophils and synergistically enhances the ability of endothelial cells to eliminate ROS. We also combine transcriptome, proteome, and metabolome analysis and find that CXCR1 knockdown promotes glutamine metabolism and leads to reduced glutathione by upregulating the expression of malic enzyme 1. This preclinical evidence suggests that a conservative oxygen strategy should be recommended and indicates that targeting CXCR1 has the potential to restore redox homeostasis by reducing oxygen toxicity when inspiratory hyperoxia treatment is necessary.


Asunto(s)
Hiperoxia , Lesión Pulmonar , Receptores de Interleucina-8A , Humanos , Células Endoteliales/metabolismo , Glutamina/metabolismo , Hiperoxia/complicaciones , Hiperoxia/metabolismo , Pulmón/metabolismo , Lesión Pulmonar/terapia , Oxígeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Ratones , Receptores de Interleucina-8A/metabolismo
10.
Respir Physiol Neurobiol ; 316: 104122, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37481014

RESUMEN

Many studies have been conducted in the search for the mechanism underlying CNS-oxygen toxicity (OT), which may be fatal when diving with a closed-circuit apparatus. We investigated the influence of hyperbaric oxygen (HBO) on blood glucose level (BGL) in Mn-superoxide dismutase (SOD2) knockdown mice regarding CNS-OT in particular under stress conditions such as hypoglycemia or hyperglycemia. Two groups of mice were used: SOD2 knockdown (Heterozygous, HET) mice and their WT family littermates. Animals were exposed to HBO from 2 up to 5 atmosphere absolute (ATA). Blood samples were drawn before and after each exposure for measurement of BGL. The mice were sacrificed following the final exposure, which was at 5 ATA. We used RT-PCR and Western blot to measure levels of glucose transporter 1 (GLUT1) and hypoxia inducible factor (HIF)1a in the cortex and hippocampus. In the hypoglycemic condition, the HET mice were more sensitive to oxidative stress than the WT. In addition, following exposure to sub-toxic HBO, which does not induce CNS-OT, BGL were higher in the HET mice compared with the WT. The expression of mRNA of GLUT1 and HIF-1a decreased in the hippocampus in the HET mice, while the protein level decreased in the HET and WT following HBO exposure. The results suggest that the higher BGL following HBO exposure especially at SOD2 HET mice is in part due to reduction in GLUT1 as a consequence of lower HIF-1a expression. This may add part to the puzzle of the understanding the mechanism leading to CNS-OT.


Asunto(s)
Oxigenoterapia Hiperbárica , Hiperoxia , Animales , Ratones , Ratas , Glucemia , Transportador de Glucosa de Tipo 1/genética , Oxígeno/metabolismo , Ratas Sprague-Dawley , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
11.
Redox Biol ; 64: 102777, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37315344

RESUMEN

Zinc (Zn) has antioxidant, anti-inflammatory and anti-proliferative actions, with Zn dysregulation associated with coronary ischemia/reperfusion injury and smooth muscle cell dysfunction. As the majority of studies concerning Zn have been conducted under non-physiological hyperoxic conditions, we compare the effects of Zn chelation or supplementation on total intracellular Zn content, antioxidant NRF2 targeted gene transcription and hypoxia/reoxygenation-induced reactive oxygen species generation in human coronary artery smooth muscle cells (HCASMC) pre-adapted to hyperoxia (18 kPa O2) or normoxia (5 kPa O2). Expression of the smooth muscle marker SM22-α was unaffected by lowering pericellular O2, whereas calponin-1 was significantly upregulated in cells under 5 kPa O2, indicating a more physiological contractile phenotype under 5 kPa O2. Inductively coupled plasma mass spectrometry established that Zn supplementation (10 µM ZnCl2 + 0.5 µM pyrithione) significantly increased total Zn content in HCASMC under 18 but not 5 kPa O2. Zn supplementation increased metallothionein mRNA expression and NRF2 nuclear accumulation in cells under 18 or 5 kPa O2. Notably, NRF2 regulated HO-1 and NQO1 mRNA expression in response to Zn supplementation was only upregulated in cells under 18 but not 5 kPa. Furthermore, whilst hypoxia increased intracellular glutathione (GSH) in cells pre-adapted to 18 but not 5 kPa O2, reoxygenation had negligible effects on GSH or total Zn content. Reoxygenation-induced superoxide generation in cells under 18 kPa O2 was abrogated by PEG-superoxide dismutase but not by PEG-catalase, and Zn supplementation, but not Zn chelation, attenuated reoxygenation-induced superoxide generation in cells under 18 but not 5kPaO2, consistent with a lower redox stress under physiological normoxia. Our findings highlight that culture of HCASMC under physiological normoxia recapitulates an in vivo contractile phenotype and that effects of Zn on NRF2 signaling are altered by oxygen tension.


Asunto(s)
Vasos Coronarios , Hiperoxia , Humanos , Vasos Coronarios/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Antioxidantes/metabolismo , Superóxidos/metabolismo , Zinc/farmacología , Zinc/metabolismo , Hipoxia/metabolismo , Miocitos del Músculo Liso/metabolismo , Hiperoxia/metabolismo , Glutatión/metabolismo , ARN Mensajero/metabolismo , Suplementos Dietéticos
12.
Life Sci ; 328: 121880, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37356749

RESUMEN

AIMS: Pulmonary oxygen toxicity is caused by exposure to a high fraction of inspired oxygen, which damages multiple cell types within the lung. The cellular basis for pulmonary oxygen toxicity includes mitochondrial dysfunction. The aim of this study was to identify the effects of hyperoxic exposure on mitochondrial bioenergetic and dynamic functions in pulmonary cells. MAIN METHODS: Mitochondrial respiration, inner membrane potential, dynamics (including motility), and distribution of mitochondrial bioenergetic capacity in two intracellular regions were quantified using cultured human lung microvascular endothelial cells, human pulmonary artery endothelial cells and A549 cells. Hyperoxic (95 % O2) exposures lasted 24, 48 and 72 h, durations relevant to mechanical ventilation in intensive care settings. KEY FINDINGS: Mitochondrial motility was altered following all hyperoxic exposures utilized in experiments. Inhomogeneities in inner membrane potential and respiration parameters were present in each cell type following hyperoxia. The partitioning of ATP-linked respiration was also hyperoxia-duration and cell type dependent. Hyperoxic exposure lasting 48 h or longer provoked the largest alterations in mitochondrial motility and the greatest decreases in ATP-linked respiration, with a suggestion of decreases in respiration complex protein levels. SIGNIFICANCE: Hyperoxic exposures of different durations produce intracellular inhomogeneities in mitochondrial dynamics and bioenergetics in pulmonary cells. Oxygen therapy is utilized commonly in clinical care and can induce undesirable decrements in bioenergy function needed to maintain pulmonary cell function and viability. There may be adjunctive or prophylactic measures that can be employed during hyperoxic exposures to prevent the mitochondrial dysfunction that signals the presence of oxygen toxcity.


Asunto(s)
Hiperoxia , Humanos , Hiperoxia/metabolismo , Células Endoteliales/metabolismo , Pulmón/metabolismo , Oxígeno/metabolismo , Metabolismo Energético , Adenosina Trifosfato/metabolismo
13.
Am J Physiol Lung Cell Mol Physiol ; 325(2): L95-L103, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37256661

RESUMEN

The development of chronic lung disease in the neonate, also known as bronchopulmonary dysplasia (BPD), is the most common long-term complication in prematurely born infants. In BPD, the disease-characteristic inflammatory response culminates in nonreversible remodeling of the developing gas exchange area, provoked by the impact of postnatal treatments such as mechanical ventilation (MV) and oxygen treatment. To evaluate the potential of prenatal treatment regimens to modulate this inflammatory response and thereby impact the vulnerability of the lung toward postnatal injury, we designed a multilayered preclinical mouse model. After administration of either prenatal vitamin D-enriched (VitD+; 1,500 IU/g food) or -deprived (VitD-; <10 IU/kg) food during gestation in C57B6 mice (the onset of mating until birth), neonatal mice were exposed to hyperoxia (FiO2 = 0.4) with or without MV for 8 h at days 5-7 of life, whereas controls spontaneously breathed room air. Prenatal vitamin D supplementation resulted in a decreased number of monocytes/macrophages in the neonatal lung undergoing postnatal injury together with reduced TGF-ß pathway activation. In consequence, neonatal mice that received a VitD+ diet during gestation demonstrated less extracellular matrix (ECM) remodeling upon lung injury, reflected by the reduction of pulmonary α-smooth muscle actin-positive fibroblasts, decreased collagen and elastin deposition, and lower amounts of interstitial tissue in the lung periphery. In conclusion, our findings support strategies that attempt to prevent vitamin D insufficiency during pregnancy as they could impact lung health in the offspring by mitigating inflammatory changes in neonatal lung injury and ameliorating subsequent remodeling of the developing gas exchange area.NEW & NOTEWORTHY Vitamin D-enriched diet during gestation resulted in reduced lung inflammation and matrix remodeling in neonatal mice exposed to clinically relevant, postnatal injury. The results underscore the need to monitor the subclinical effects of vitamin D insufficiency that impact health in the offspring when other risk factors come into play.


Asunto(s)
Displasia Broncopulmonar , Hiperoxia , Lesión Pulmonar , Neumonía , Deficiencia de Vitamina D , Humanos , Embarazo , Femenino , Recién Nacido , Animales , Ratones , Animales Recién Nacidos , Lesión Pulmonar/metabolismo , Vitamina D/farmacología , Vitamina D/metabolismo , Pulmón/metabolismo , Displasia Broncopulmonar/tratamiento farmacológico , Displasia Broncopulmonar/prevención & control , Displasia Broncopulmonar/metabolismo , Neumonía/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Hiperoxia/metabolismo , Deficiencia de Vitamina D/tratamiento farmacológico , Deficiencia de Vitamina D/metabolismo , Suplementos Dietéticos
14.
J Breath Res ; 17(3)2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37207635

RESUMEN

Prolonged exposure to hyperbaric hyperoxia can lead to pulmonary oxygen toxicity (PO2tox). PO2tox is a mission limiting factor for special operations forces divers using closed-circuit rebreathing apparatus and a potential side effect for patients undergoing hyperbaric oxygen (HBO) treatment. In this study, we aim to determine if there is a specific breath profile of compounds in exhaled breath condensate (EBC) that is indicative of the early stages of pulmonary hyperoxic stress/PO2tox. Using a double-blind, randomized 'sham' controlled, cross-over design 14 U.S. Navy trained diver volunteers breathed two different gas mixtures at an ambient pressure of 2 ATA (33 fsw, 10 msw) for 6.5 h. One test gas consisted of 100% O2(HBO) and the other was a gas mixture containing 30.6% O2with the balance N2(Nitrox). The high O2stress dive (HBO) and low O2stress dive (Nitrox) were separated by at least seven days and were conducted dry and at rest inside a hyperbaric chamber. EBC samples were taken immediately before and after each dive and subsequently underwent a targeted and untargeted metabolomics analysis using liquid chromatography coupled to mass spectrometry (LC-MS). Following the HBO dive, 10 out of 14 subjects reported symptoms of the early stages of PO2tox and one subject terminated the dive early due to severe symptoms of PO2tox. No symptoms of PO2tox were reported following the nitrox dive. A partial least-squares discriminant analysis of the normalized (relative to pre-dive) untargeted data gave good classification abilities between the HBO and nitrox EBC with an AUC of 0.99 (±2%) and sensitivity and specificity of 0.93 (±10%) and 0.94 (±10%), respectively. The resulting classifications identified specific biomarkers that included human metabolites and lipids and their derivatives from different metabolic pathways that may explain metabolomic changes resulting from prolonged HBO exposure.


Asunto(s)
Oxigenoterapia Hiperbárica , Hiperoxia , Humanos , Pruebas Respiratorias , Oxigenoterapia Hiperbárica/efectos adversos , Hiperoxia/tratamiento farmacológico , Nitrógeno/uso terapéutico , Oxígeno , Estudios Cruzados
15.
Medicine (Baltimore) ; 102(1): e32295, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36607871

RESUMEN

Adjunctive therapy for hypertension is in high demand for clinical research. Therefore, several meta-analyses have provided sufficient evidence for meditation as an adjunct therapy, without being anchored on reliable physiological grounds. Meditation modulates the autonomic nervous system. Herein, we propose a hierarchical-dependent effect for the carotid body (CB) in attenuating blood pressure (BP) and ventilatory variability (VV) fine-tuning due to known nerve connections between the CB, prefrontal brain, hypothalamus, and solitary tract nucleus. The aim of this exploratory study was to investigate the role of CB in the possible decrease in BP and changes in VV that could occur in response to meditation. This was a prospective, single-center, parallel-group, randomized, controlled clinical trial with concealed allocation. Eligible adult subjects of both sexes with stage 1 hypertension will be randomized into 1 of 2 groups: transcendental meditation or a control group. Subjects will be invited to 3 visits after randomization and 2 additional visits after completing 8 weeks of meditation or waiting-list control. Thus, subjects will undergo BP measurements in normoxia and hyperoxia, VV measurements using the Poincaré method at rest and during exercise, and CB activity measurement in the laboratory. The primary outcome of this study was the detection of changes in BP and CB activity after 8 weeks. Our secondary outcome was the detection of changes in the VV at rest and during exercise. We predict that interactions between hyperoxic deactivation of CB and meditation; Will reduce BP beyond stand-alone intervention or alternatively; Meditation will significantly attenuate the effects of hyperoxia as a stand-alone intervention. In addition, VV can be changed, partially mediated by a reduction in CB activity. Trial registration number: ReBEC registry (RBR-55n74zm). Stage: pre-results.


Asunto(s)
Cuerpo Carotídeo , Hiperoxia , Hipertensión , Meditación , Adulto , Masculino , Femenino , Humanos , Meditación/métodos , Estudios Prospectivos , Resultado del Tratamiento , Ensayos Clínicos Controlados Aleatorios como Asunto
16.
Pharmacol Res ; 187: 106624, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36563868

RESUMEN

Selenium has good antitumor effects in vitro, but the hypoxic microenvironment in solid tumors makes its clinical efficacy unsatisfactory. We hypothesized that the combination with oxygen therapy might improve the treatment efficacy of selenium in hypoxic tumors through the changes of redox environment. In this work, two selenium compounds, Na2SeO3 and CysSeSeCys, were selected to interrogate their therapeutic effects on hepatocellular carcinoma (HCC) under different oxygen levels. In tumor-bearing mice, both selenium compounds significantly inhibited the tumor growth, and combined with oxygen therapy further reduced the tumor volume about 50 %. In vitro HepG2 cell experiments, selenium induced autophagy and delayed apoptosis under hypoxia (1 % O2), while inhibited autophagy and accelerated apoptosis under hyperoxia (60 % O2). We found that, in contrast to hypoxia, the hyperoxic environment facilitated the H2Se, produced by the selenium metabolism in cells, to be rapidly oxidized to generate H2O2, leading to inhibit the expression level of Nrf2 and to increase that of phosphorylation of p38 and MKK4, resulting in inhibiting autophagy and accelerating apoptosis. Once the Nrf2 gene was knocked down, selenium compounds combined with hyperoxia treatment would further activate the MAPK signaling pathway and further increase apoptosis. These findings highlight oxygen can significantly enhance the anti-HCC effect of selenium compounds through regulating the Nrf2 and MAPK signaling pathways, thus providing novel therapeutic strategy for the hypoxic tumors and pave the way for the application of selenium in clinical treatment.


Asunto(s)
Carcinoma Hepatocelular , Hiperoxia , Neoplasias Hepáticas , Compuestos de Selenio , Selenio , Animales , Ratones , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Selenio/farmacología , Selenio/uso terapéutico , Compuestos de Selenio/metabolismo , Compuestos de Selenio/farmacología , Compuestos de Selenio/uso terapéutico , Peróxido de Hidrógeno/farmacología , Transducción de Señal , Apoptosis , Hipoxia , Oxígeno , Microambiente Tumoral
17.
Front Immunol ; 14: 1319986, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38332911

RESUMEN

Introduction: Supplementation with increased inspired oxygen fractions has been suggested to alleviate the harmful effects of tissue hypoxia during hemorrhagic shock (HS) and traumatic brain injury. However, the utility of therapeutic hyperoxia in critical care is disputed to this day as controversial evidence is available regarding its efficacy. Furthermore, in contrast to its hypoxic counterpart, the effect of hyperoxia on the metabolism of circulating immune cells remains ambiguous. Both stimulating and detrimental effects are possible; the former by providing necessary oxygen supply, the latter by generation of excessive amounts of reactive oxygen species (ROS). To uncover the potential impact of increased oxygen fractions on circulating immune cells during intensive care, we have performed a 13C-metabolic flux analysis (MFA) on PBMCs and granulocytes isolated from two long-term, resuscitated models of combined acute subdural hematoma (ASDH) and HS in pigs with and without cardiovascular comorbidity. Methods: Swine underwent resuscitation after 2 h of ASDH and HS up to a maximum of 48 h after HS. Animals received normoxemia (PaO2 = 80 - 120 mmHg) or targeted hyperoxemia (PaO2 = 200 - 250 mmHg for 24 h after treatment initiation, thereafter PaO2 as in the control group). Blood was drawn at time points T1 = after instrumentation, T2 = 24 h post ASDH and HS, and T3 = 48 h post ASDH and HS. PBMCs and granulocytes were isolated from whole blood to perform electron spin resonance spectroscopy, high resolution respirometry and 13C-MFA. For the latter, we utilized a parallel tracer approach with 1,2-13C2 glucose, U-13C glucose, and U-13C glutamine, which covered essential pathways of glucose and glutamine metabolism and supplied redundant data for robust Bayesian estimation. Gas chromatography-mass spectrometry further provided multiple fragments of metabolites which yielded additional labeling information. We obtained precise estimations of the fluxes, their joint credibility intervals, and their relations, and characterized common metabolic patterns with principal component analysis (PCA). Results: 13C-MFA indicated a hyperoxia-mediated reduction in tricarboxylic acid (TCA) cycle activity in circulating granulocytes which encompassed fluxes of glutamine uptake, TCA cycle, and oxaloacetate/aspartate supply for biosynthetic processes. We further detected elevated superoxide levels in the swine strain characterized by a hypercholesterolemic phenotype. PCA revealed cell type-specific behavioral patterns of metabolic adaptation in response to ASDH and HS that acted irrespective of swine strains or treatment group. Conclusion: In a model of resuscitated porcine ASDH and HS, we saw that ventilation with increased inspiratory O2 concentrations (PaO2 = 200 - 250 mmHg for 24 h after treatment initiation) did not impact mitochondrial respiration of PBMCs or granulocytes. However, Bayesian 13C-MFA results indicated a reduction in TCA cycle activity in granulocytes compared to cells exposed to normoxemia in the same time period. This change in metabolism did not seem to affect granulocytes' ability to perform phagocytosis or produce superoxide radicals.


Asunto(s)
Hematoma Subdural Agudo , Hiperoxia , Choque Hemorrágico , Animales , Porcinos , Glutamina/metabolismo , Ciclo del Ácido Cítrico , Análisis de Flujos Metabólicos/métodos , Superóxidos , Teorema de Bayes , Granulocitos/metabolismo , Oxígeno , Glucosa/metabolismo
18.
Nutrients ; 14(24)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36558387

RESUMEN

A high fiber diet (HFD) and dietary supplementation with acetate have been reported to have beneficial effects in a variety of diseases. We investigated the effects of a HFD and acetate supplementation on the gut microbiota and hyperoxia-induced acute lung injury (HALI) in mice. Mice were fed a control diet, HFD, or acetate supplementation for three weeks, and their gut microbiome composition, lung tissues, and bronchoalveolar lavage fluid (BALF) were examined after exposure to ambient air or hyperoxia. Both the HFD and acetate supplementation modified the gut microbiota community and increased the proportion of acetate-producing bacteria in mice exposed to hyperoxia. The HFD and acetate supplementation also increased the abundance of Bacteroides acidifaciens and reduced gut dysbiosis according to the ratio of Firmicutes to Bacteroidetes. Compared with hyperoxia-exposed mice fed a control diet, both the HFD and acetate supplementation significantly increased the survival time while reducing the severity of pulmonary edema and the concentrations of protein and inflammatory mediators in BALF. Moreover, the HFD and acetate supplementation reduced the production of free radicals, attenuated NF-κB signaling activation, and decreased apoptosis in the lung tissues. Overall, this study indicates that a HFD or acetate supplementation reduces the severity of HALI through alterations in the gut microbiota to exert anti-inflammatory effects.


Asunto(s)
Lesión Pulmonar Aguda , Hiperoxia , Ratones , Animales , Dieta Alta en Grasa , Acetatos , Suplementos Dietéticos , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/prevención & control , Ratones Endogámicos C57BL
19.
Respir Res ; 23(1): 340, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36496404

RESUMEN

BACKGROUND: Premature infants, subjected to supplemental oxygen and mechanical ventilation, may develop bronchopulmonary dysplasia, a chronic lung disease characterized by alveolar dysplasia and impaired vascularization. We and others have shown that hyperoxia causes senescence in cultured lung epithelial cells and fibroblasts. Although miR-34a modulates senescence, it is unclear whether it contributes to hyperoxia-induced senescence. We hypothesized that hyperoxia increases miR-34a levels, leading to cellular senescence. METHODS: We exposed mouse lung epithelial (MLE-12) cells and primary human small airway epithelial cells to hyperoxia (95% O2/5% CO2) or air (21% O2/5% CO2) for 24 h. Newborn mice (< 12 h old) were exposed to hyperoxia (> 95% O2) for 3 days and allowed to recover in room air until postnatal day 7. Lung samples from premature human infants requiring mechanical ventilation and control subjects who were not mechanically ventilated were employed. RESULTS: Hyperoxia caused senescence as indicated by loss of nuclear lamin B1, increased p21 gene expression, and senescence-associated secretory phenotype factors. Expression of miR-34a-5p was increased in epithelial cells and newborn mice exposed to hyperoxia, and in premature infants requiring mechanical ventilation. Transfection with a miR-34a-5p inhibitor reduced hyperoxia-induced senescence in MLE-12 cells. Additionally, hyperoxia increased protein levels of the oncogene and tumor-suppressor Krüppel-like factor 4 (KLF4), which were inhibited by a miR-34a-5p inhibitor. Furthermore, KLF4 knockdown by siRNA transfection reduced hyperoxia-induced senescence. CONCLUSION: Hyperoxia increases miR-34a-5p, leading to senescence in lung epithelial cells. This is dictated in part by upregulation of KLF4 signaling. Therefore, inhibiting hyperoxia-induced senescence via miR-34a-5p or KLF4 suppression may provide a novel therapeutic strategy to mitigate the detrimental consequences of hyperoxia in the neonatal lung.


Asunto(s)
Displasia Broncopulmonar , Hiperoxia , Factor 4 Similar a Kruppel , MicroARNs , Animales , Humanos , Ratones , Animales Recién Nacidos , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/tratamiento farmacológico , Dióxido de Carbono , Senescencia Celular , Células Epiteliales/metabolismo , Hiperoxia/genética , Hiperoxia/metabolismo , Factor 4 Similar a Kruppel/genética , Factor 4 Similar a Kruppel/metabolismo , Pulmón/metabolismo , MicroARNs/metabolismo
20.
Diving Hyperb Med ; 52(4)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36525683

RESUMEN

INTRODUCTION: Previous studies have highlighted hyperoxia-induced microcirculation modifications, but few have focused on hyperbaric oxygen (HBO) effects. Our primary objective was to explore hyperbaric hyperoxia effects on the microcirculation of healthy volunteers and investigate whether these modifications are adaptative or not. METHODS: This single centre, open-label study included 15 healthy volunteers. Measurements were performed under five conditions: T0) baseline value (normobaric normoxia); T1) hyperbaric normoxia; T2) hyperbaric hyperoxia; T3) normobaric hyperoxia; T4) return to normobaric normoxia. Microcirculatory data were gathered via laser Doppler, near-infrared spectroscopy and transcutaneous oximetry (PtcO2). Vascular-occlusion tests were performed at each step. We used transthoracic echocardiography and standard monitoring for haemodynamic investigation. RESULTS: Maximal alterations were observed under hyperbaric hyperoxia which led, in comparison with baseline, to arterial hypertension (mean arterial pressure 105 (SD 12) mmHg vs 95 (11), P < 0.001) and bradycardia (55 (7) beats·min⁻¹ vs 66 (8), P < 0.001) while cardiac output remained unchanged. Hyperbaric hyperoxia also led to microcirculatory vasoconstriction (rest flow 63 (74) vs 143 (73) perfusion units, P < 0.05) in response to increased PtcO2 (104.0 (45.9) kPa vs 6.3 (2.4), P < 0.0001); and a decrease in laser Doppler parameters indicating vascular reserve (peak flow 125 (89) vs 233 (79) perfusion units, P < 0.05). Microvascular reactivity was preserved in every condition. CONCLUSIONS: Hyperoxia significantly modifies healthy volunteer microcirculation especially during HBO exposure. The rise in PtcO2 promotes an adaptative vasoconstrictive response to protect cellular integrity. Microvascular reactivity remains unaltered and vascular reserve is mobilised in proportion to the extent of the ischaemic stimulus.


Asunto(s)
Oxigenoterapia Hiperbárica , Hiperoxia , Humanos , Microcirculación/fisiología , Voluntarios Sanos , Oxígeno , Hemodinámica/fisiología , Oxigenoterapia Hiperbárica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA